If $$\ 2^{3}\ $$# $$4^{3}\ $$ @$$\ 3^{3}\ $$= 45 and $$\ 3^{3}\ $$# $$\ 5^{3}\ $$@ $$\ 4^{3}\ $$= 88, then $$\ 4^{3}\ $$# $$\ 2^{3}\ $$@ $$\ 1^{3}\ $$= ?
If we replace # with '+' and @ with '-', then we get the desired result.
Eg :- $$[(2)^3+(4)^3]-(3)^3=(8+64-27)=45$$
and $$[(3)^3+(5)^3]-(4)^3=(27+125-64)=88$$
Similarly, $$[(4)^3+(2)^3]-(1)^3=(8+64-1)=71$$
=> Ans - (B)
Create a FREE account and get: