Question 55

Let $$a_1, a_2, ......... a_{19}$$ be the first 19 terms of an arithmetic progression where $$a_1 + a_8 + a_{12} + a_{19} = 224$$. The sum $$a_1 + a_2 + a_3 + ........ + a_{19}$$ is equal to

Solution

Let first term $$a_1 = a$$ and common difference = d

$$a_2 = a + d; a_3 = a + 2d$$

Now, 

$$a_1 + a_8 + a_{12} + a_{19} = 224$$

a + a + 7d + a + 11d + a + 18d = 224

4a + 36d = 224

a + 9d = 56 ....... (1)

= $$a_1 + a_2 + a_3 + ........ + a_{19}$$

= a + a + d + a + 2d + .......... + a + 18d

= 19a + 171d

= 19(a + 9d)

= 19 * 56

= 1064


cracku

Boost your Prep!

Download App