If x and y are positive real numbers such that their sum is 1, the maximum value of $$x^4y + xy^4$$ is
$$=x^4y + xy^4$$
$$=xy(x^3 + y^3)$$
$$=xy(x + y)(x^2 + y^2 - xy)$$
$$=xy(x^2 + y^2 - xy)$$ [Since, x + y = 1]
$$=xy[(x + y)^2 - 2xy - xy)]$$
$$=xy[1 - 3xy]$$
Ley xy = a
$$S=a[1 - 3a]$$
$$S=a - 3a^2$$
$$\frac{\text{d}S}{\text{d}a} = 1 - 6a$$
For maximum;
$$\frac{\text{d}S}{\text{d}a} = 1 - 6a = 0$$
$$a = xy = \frac{1}{6}$$
After putting $$xy = \frac{1}{6}$$ :
$$=xy[1 - 3xy]$$
$$=\frac{1}{6}(1 - 3 * \frac{1}{6})$$
$$=\frac{1}{12}$$