A line DE parallel to the side BC intersects the other two sides of triangle at point D and E such that AD=$$\frac{1}{6}$$ AB andĀ AE=$$\frac{1}{6}$$ AC. If the value of BC is 18 cm then calculate the value of DE (in cm).
GivenĀ :Ā AD=$$\frac{1}{6}$$ AB andĀ AE=$$\frac{1}{6}$$ AC and BC = 18 cm
To findĀ : DE = ?
SolutionĀ : In $$\triangle$$ ADE and $$\triangle$$ ABC,
$$\angle$$ A = $$\angle$$ A Ā Ā (Common Angle)
$$\frac{AD}{AB}=\frac{AE}{AC}=\frac{1}{6}$$ Ā Ā (Given)
$$\therefore$$Ā $$\triangle$$ ADE $$\sim$$ $$\triangle$$ ABC
=>Ā $$\frac{AD}{AB}=\frac{AE}{AC}=\frac{DE}{BC}$$
=> $$\frac{DE}{18}=\frac{1}{6}$$
=> $$DE=\frac{18}{6}=3$$ cm
=> Ans - (B)
Create a FREE account and get: