The value of $$\frac{30_{C_1}}{2} + \frac{30_{C_3}}{4} + \frac{30_{C_5}}{6} +...+ \frac{30_{C_{29}}}{30}$$ is
We know that $$(1+x)^n$$ = $$^nC_0*1^n+^nC_1*1^{n-1}*x......................................^nC_n*x^n$$
On Integrating, we get
$$\frac{(1+x)^{n+1}}{n+1}$$ = $$\frac{^nC_0*1^n}{1}+\frac{^nC_1*1^{n-1}*x}{2}......................................\frac{^nC_n*x^n}{n+1}$$
When x = 1
$$\frac{2^{31}}{31}$$ = $$\frac{30_{C_0}}{1}$$ +$$\frac{30_{C_1}}{2} + \frac{30_{C_2}}{3} +\frac{30_{C_3}}{4} + \frac{30_{C_5}}{6} +...+ \frac{30_{C_{29}}}{30} + \frac{30_{C_{30}}}{31}$$ -- Eq 1
When x = -1
0= $$ \frac{30_{C_0}}{1}$$ -$$\frac{30_{C_1}}{2} + \frac{30_{C_2}}{3} -\frac{30_{C_3}}{4} + \frac{30_{C_5}}{6} +...+ \frac{30_{C_{29}}}{30} - \frac{30_{C_{30}}}{31}$$ -- Eq 2
Adding Eq 1 and 2, we get
$$\frac{2^{31}}{31}$$ = 2($$\frac{30_{C_1}}{2} + \frac{30_{C_3}}{4} + \frac{30_{C_5}}{6} +...+ \frac{30_{C_{29}}}{30}$$)
($$\frac{30_{C_1}}{2} + \frac{30_{C_3}}{4} + \frac{30_{C_5}}{6} +...+ \frac{30_{C_{29}}}{30}$$) = $$\frac{2^{30}}{31}$$
Create a FREE account and get: