Let a - d, a, a + d, a + 2d be four terms of an arithmetic progression with integer entries and a, a + d, a + 2d, a + 3d be another four terms of the same arithmetic progression. Let $$x = a(a - d) (a + d) (a + 2d) + d^4$$ and $$y = a(a + d) (a + 2d) (a + 3d) + d^4$$. Then x + y is equal to ?
Given thatĀ $$x = a(a - d) (a + d) (a + 2d) + d^4$$Ā
$$x=a\left(a-d\right)\left(a+d\right)\left(a+2d\right)+d^4$$
$$=a\left(a+d\right)\left(a-d\right)\left(a+2d\right)+d^4$$
$$=\left(a^2+ad\right)\left(a^2+2ad-ad-2d^2\right)+d^4$$
LetĀ $$t=a^2+ad$$
$$x=\left(t\right)\left(t-2d^2\right)+d^4$$
$$x=t^2-2td^2+d^4$$
$$x=\left(t-d^2\right)^2$$
SubstitutingĀ $$t=a^2+ad$$
$$x=\left(a^2+ad-d^2\right)^2$$.........(1)
Given that,Ā Ā $$y = a(a + d) (a + 2d) (a + 3d) + d^4$$
$$y=a\left(a+d\right)\ \left(a+2d\right)\ \left(a+3d\right)+d^4$$
$$=a\left(a+3d\right)\ \left(a+d\right)\ \left(a+2d\right)+d^4$$
$$=\left(a^2+3ad\right)\ \left(a^2+2ad+ad+2d^2\right)+d^4$$
$$=\left(a^2+3ad\right)\ \left(a^2+3ad+2d^2\right)+d^4$$
LetĀ $$t=a^2+3ad$$
$$=\left(t\right)\ \left(t+2d^2\right)+d^4$$
$$=t^2+2td^2+d^4$$
$$=\left(t+d^2\right)^2$$
SubstitutingĀ Ā $$t=a^2+3ad$$
$$y=\left(a^2+3ad+d^2\right)^2$$.........(2)
From Eq (1) &Ā (2)
We get,Ā $$x+y=\left(a^2-d^2+ad\right)^2+\left(a^2+d^2+3ad\right)^2$$
Option (D) is correct.
Create a FREE account and get: