If $$cos\ 20^\circ$$= m and $$cos\ 70^\circ$$=n, then the value of $$m^{2}+n^{2}\ is$$
$$m^{2}+n^{2}$$ = $$cos^{2}\ 20^{\circ} + cos^{2}\ 70^{\circ}$$Â
$$\Rightarrow cos^{2}\ (90^{\circ} - 20^{\circ}) + cos^{2}\ 70^{\circ}$$
$$\Rightarrow\ sin^{2}\ 70^{\circ}+cos^{2}\ 70^{\circ}$$
$$\Rightarrow$$ 1Â ($$\because$$Â $$sin^{2}\theta+cos^{2}\theta=1)$$
Hence, option B is the correct answer.
Create a FREE account and get: