Join WhatsApp Icon CAT WhatsApp Group
Question 13

The product of two positive numbers is 616. If the ratio of the difference of their cubes to the cube of their difference is 157:3, then the sum of the two numbers is

Assume the numbers are a and b, then ab=616

We have, $$\ \ \frac{\ a^3-b^3}{\left(a-b\right)^3}$$ = $$\ \frac{\ 157}{3}$$

=> $$\ 3\left(a^3-b^3\right)\ =\ 157\left(a^3-b^3+3ab\left(b-a\right)\right)$$

=> $$154\left(a^3-b^3\right)+3*157*ab\left(b-a\right)$$ = 0

=> $$154\left(a^3-b^3\right)+3*616*157\left(b-a\right)$$ = 0        (ab=616)

=>$$a^3-b^3+\left(3\times\ 4\times\ 157\left(b-a\right)\right)$$    (154*4=616)

=> $$\left(a-b\right)\left(a^2+b^2+ab\right)\ =\ 3\times\ 4\times\ 157\left(a-b\right)$$

=> $$a^2+b^2+ab\ =\ 3\times\ 4\times\ 157$$

Adding ab=616 on both sides, we get

$$a^2+b^2+ab\ +ab=\ 3\times\ 4\times\ 157+616$$

=> $$\left(a+b\right)^2=\ 3\times\ 4\times\ 157+616$$ = 2500

=> a+b=50

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 35+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free