If $$x^2 + x = 19$$, then what is the value of $$(x + 5)^2+[\frac{1}{(x + 5)^2}]$$ ?
To find :Â $$(x + 5)^2+[\frac{1}{(x + 5)^2}]$$
Let $$(x+5)=a$$
=> $$x=(a-5)$$ ------------(i)
Thus, we need to find : $$a^2+\frac{1}{a^2}$$ -----------(ii)
Given : $$x^2 + x = 19$$
Substituting value from equation (i),
=> $$(a-5)^2+(a-5)=19$$
=> $$a^2-10a+25+a-5-19=0$$
=> $$a^2-9a+1=0$$
=> $$a^2+1=9a$$
=> $$\frac{a^2+1}{a}=9$$
=> $$a+\frac{1}{a}=9$$
Squaring both sides, we get :
=> $$(a+\frac{1}{a})^2=(9)^2$$
=> $$a^2+\frac{1}{a^2}+2(a)(\frac{1}{a})=81$$
=> $$a^2+\frac{1}{a^2}=81-2=79$$
=> Ans - (B)
Create a FREE account and get: