If $$x +[\frac{1}{(4x)}]=\frac{5}{2}$$, then what is the value of $$\frac{(64x^6 + 1)}{8x^3}$$ ?
To find : $$\frac{(64x^6 + 1)}{8x^3}$$
= $$8x^3+\frac{1}{8x^3}$$
= $$(2x)^3+(\frac{1}{2x})^3$$
Let $$2x=a$$
=> $$x=\frac{a}{2}$$ ---------(i)
Thus, we need to find : $$a^3+\frac{1}{a^3}$$ ----------(ii)
Given : $$x +[\frac{1}{(4x)}]=\frac{5}{2}$$
Substituting value from equation (i),
=> $$\frac{a}{2}+\frac{1}{2a}=\frac{5}{2}$$
=> $$a+\frac{1}{a}=5$$
Cubing both sides, we get :
=> $$(a+\frac{1}{a})^3=(5)^3$$
=> $$a^3+\frac{1}{a^3}+3(a)(\frac{1}{a})(a+\frac{1}{a})=125$$
=> $$a^3+\frac{1}{a^3}+3(5)=125$$
=>Â $$a^3+\frac{1}{a^3}=125-15=110$$
=> Ans - (A)
Create a FREE account and get: