Question 90

In triangle ABC, AD, BE and CF are the medians intersecting at point G and area of triangle ABC is 156 cm2. What is the area $$(in cm^2)$$ of triangle FGE?

Solution

Medians of a triangle divides the triangle into 6 parts of equal areas.

Also, ar($$\triangle$$ ABC) = 156

=> ar($$\triangle$$ AFG) = ar($$\triangle$$ FBG) = ar($$\triangle$$ BGD) = ar($$\triangle$$ DGC) = ar($$\triangle$$ CGE) = ar($$\triangle$$ EGA) = $$\frac{156}{6}=26$$ $$cm^2$$

=> ar(AFGE) = ar($$\triangle$$ AFG) + ar($$\triangle$$ EAG)

= $$26+26=52$$ $$cm^2$$

$$\therefore$$ ar($$\triangle$$ FGE) = $$\frac{1}{4}\times$$ ar(AFGE)

= $$\frac{52}{4}=13$$ $$cm^2$$

=> Ans - (A)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App