The area of a rectangle is 1200 sq cm and its perimeter 140 cm. What is the length of its diagonal?
Let the length of the rectangle be $$l$$ cm and breadth be $$b$$ cm
Perimeter of rectangle = $$2(l+b)=140$$
=> $$(l+b)=\frac{140}{2}=70$$
=> $$l=70-b$$ -----------(i)
Area = $$l \times b=1200$$
Substituting value of $$l$$ from equation (i)
=> $$(70-b)b = 1200$$
=> $$b^2-70b+1200=0$$
=> $$b^2-40b-30b+1200=0$$
=> $$b(b-40)-30(b-40)=0$$
=> $$(b-40)(b-30)=0$$
=> $$b=30,40$$
Thus, the length $$l=40$$ cm and breadth $$b=30$$cm
$$\therefore$$ Diagonal of rectangle = $$\sqrt{l^2+b^2}$$
= $$\sqrt{(40)^2+(30)^2} = \sqrt{1600 + 900}$$
= $$\sqrt{2500} = 50$$ cm
=> Ans - (A)
Create a FREE account and get: