Question 87

If x - 2y = 2 and 3x + y = 20, then the value of (x,y) is

Solution

Equation 1 : x - 2y = 2

Equation 2 : 3x + y = 20

Multiplying equation (ii) by 2

=> $$6x + 2y = 40$$ ------(iii)

Adding equations(i) and (iii), we get :

=> $$(x+6x)=2+40$$

=> $$7x = 42$$

=> $$x = \frac{42}{7} = 6$$

Substituting value of $$x$$ in equation (i)

=> $$2y = 6 - 2 = 4$$

=> $$y = \frac{4}{2}=2$$

$$\therefore (x,y)=(6,2)$$

=> Ans - (A)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App