If $$\frac{(5x-y)}{(5x+y)}=\frac{3}{7}$$, then what is the value of $$\frac{4x^{2}+y^{2}-4xy}{9x^{2}+16y^{2}+24xy}$$ ?
Given : $$\frac{(5x-y)}{(5x+y)}=\frac{3}{7}$$
=> $$35x-7y=15x+3y$$
=> $$35x-15x=7y+3y$$
=> $$20x=10y$$
=> $$\frac{x}{y}=\frac{10}{20}=\frac{1}{2}$$
Let $$x=1$$ and $$y=2$$
To find : $$\frac{4x^{2}+y^{2}-4xy}{9x^{2}+16y^{2}+24xy}$$
= $$\frac{4(1)^2+(2)^2-4(1)(2)}{9(1)^2+16(2)^2+24(1)(2)}$$
= $$\frac{4+4-8}{9+64+48}=0$$
=> Ans - (A)
Create a FREE account and get: