Given : $$(x+y)^{2}=xy+1$$
=> $$x^2+y^2+2xy=xy+1$$
=> $$x^2+y^2+xy=1$$ ------------(i)
Also, $$x^3 - y^3 = 1$$
= $$(x-y)(x^2+y^2+xy)=1$$
Substituting value from equation (i), we get :
=> $$(x-y)(1)=1$$
=> $$x-y=1$$
=> Ans - (A)
Create a FREE account and get: