Question 87

If 2x + (9/x) = 9, then what is the minimum value of $$x^{2}+(\frac{1}{x^{2}})$$ ?

Solution

$$\Rightarrow$$ 2x + (9/x) = 9

$$\Rightarrow$$ $$2x^2 - 9x + 9 = 0$$

$$\Rightarrow$$ $$x = 1.5, 3$$

So at x = 1.5, value of $$x^{2}+(\frac{1}{x^{2}})$$ = $$1.5^2 + \dfrac{1}{1.5^2}$$ = $$\dfrac{97}{36}$$

So at x = 3, value of $$x^{2}+(\frac{1}{x^{2}})$$ = $$3^2 + \dfrac{1}{3^2}$$ = $$\dfrac{82}{9}$$

Clearly, $$\dfrac{97}{36}$$ is lesser than $$\dfrac{82}{9}$$.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App