Sign in
Please select an account to continue using cracku.in
↓ →
Find all the values of x that satisfy the inequality below.
$$\dfrac{\left(x\ -\ 3\right)^2\left(x\ ^2\ +\ 9x\ +\ 20\right)}{\left(x^2\ +\ 2x\ -\ 15\right)}\ \le\ 0$$
Given inequality is, $$\dfrac{\left(x\ -\ 3\right)^2\left(x\ ^2\ +\ 9x\ +\ 20\right)}{\left(x^2\ +\ 2x\ -\ 15\right)}\ \le\ 0$$
$$x\ ^2\ +\ 9x\ +\ 20\ $$ can be written as,
$$x\ ^2\ +\ 4x\ \ +\ 5x\ +\ 20\ $$ = $$x\ \left(x\ +\ 4\right)\ \ +\ 5\left(x\ +\ 4\right)\ $$ = $$\left(x\ +\ 5\right)\left(x\ +\ 4\right)\ $$
$$x\ ^2\ +\ 2x\ -\ 15\ $$ can be written as,
$$x\ ^2\ -\ 3x\ \ +\ 5x\ -\ 15\ $$ = $$x\ \left(x\ -\ 3\right)\ \ +\ 5\left(x\ -\ 3\right)\ $$ = $$\left(x\ +\ 5\right)\left(x\ -\ 3\right)\ $$
The inequality can be written as,
$$\dfrac{\left(x\ -\ 3\right)^2\left(x\ +\ 4\right)\left(x\ +\ 5\right)}{\left(x-\ 3\right)\left(x\ +\ 5\right)}\ \le\ 0$$
We can cancel the terms (x - 3) and (x + 5) from the numerator and denominator with the condition that x cannot take the values 3 and - 5.
After cancellation, the equation becomes,
$$\left(x\ -\ 3\right)\left(x\ +\ 4\right)\ \le\ 0$$
So, the values x can take are [-4, 3). We cannot include 3 as we already obtained the condition above.
So, the correct answer is option C.
Click on the Email ☝️ to Watch the Video Solution
Educational materials for CAT preparation