Given : $$x^4+\frac{1}{x^4}=62$$
Adding 2 on both sides,
=> $$x^4+\frac{1}{x^4}+2(x^2)(\frac{1}{x^2})=62+2$$
=> $$(x^2+\frac{1}{x^2})^2=64$$
=> $$(x^2+\frac{1}{x^2})=\sqrt{64}=8$$ ------------(i)
Cubing both sides, we get :
=> $$(x^2+\frac{1}{x^2})^3=(8)^3$$
=> $$x^6+\frac{1}{x^6}+3(x^2)(\frac{1}{x^2})(x^2+\frac{1}{x^2})=512$$
=> $$x^6+\frac{1}{x^6}+3(8)=512$$
=> $$x^6+\frac{1}{x^6}=512-24=488$$
=> Ans - (D)
Create a FREE account and get: