If a + b + c = 11 and ab + bc + ca = 17, then what is the value of $$a^3 + b^3 + c^3 - 3abc$$ ?
GivenĀ : $$ab+bc+ca=17$$ -------------(i)
and $$a+b+c=11$$ -----------------(ii)
Squaring both sides, we getĀ :
=> $$(a+b+c)^2=(11)^2$$
=> $$(a^2+b^2+c^2)+2(ab+bc+ca)=121$$
=> $$(a^2+b^2+c^2)+2(17)=121$$
=> $$a^2+b^2+c^2=121-34=87$$ --------------(iii)
To findĀ :Ā $$a^3 + b^3 + c^3 - 3abc$$
= $$(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$
Substituting values from equations (i),(ii) and (iii), we getĀ :
= $$(11)(87-17)$$
= $$11\times70=770$$
=> Ans - (D)
Create a FREE account and get: