If $$x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta and x \sin \theta - y \cos \theta = 0$$, then the value of $$x^2 + y^2$$ equals
$$x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta $$ --> eq 1
$$ x \sin \theta - y \cos \theta = 0$$
$$Â x \sin \theta = y \cos \theta$$ --->eq2
substituting in eq1
$$y\cos \theta \sin^2 \theta + y \cos^3 \theta = \sin \theta \cos \theta $$
taking $$ y\cos \theta common$$
$$y\cos \theta (\sin^2 \theta + \cos^2 \theta )= \sin \theta \cos \theta $$ { we know $$\sin^2 \theta + \cos^2 \theta = 1$$}
$$y\cos \theta= \sin \theta \cos \theta $$Â
$$y= \sin \theta$$
substituting in eq 2Â
$$Â x \sin \theta =Â \sin \theta \cos \theta$$Â
x = $$\cos \theta$$
 $$x^2 + y^2$$ =  $$\sin^2\theta + \cos^2\theta$$ = 1
Create a FREE account and get: