The value of the expression $$(1 + \sec 22^\circ + \cot 68^\circ)(1 - \cosec 22^\circ + \tan 68^\circ)$$is
$$(1 + \sec 22^\circ + \cot 68^\circ)(1 - \cosec 22^\circ + \tan 68^\circ)$$
$$(1 + \sec 22^\circ + \tan22^\circ)(1 - \cosec 22^\circ + \cot22^\circ)$$
$$(1 + \frac{1}{cos 22^\circ} + Ā \frac{sinĀ 22^\circ}{cosĀ 22^\circ})(1 -Ā \frac{1}{sin 22^\circ} +\frac{cos 22^\circ}{sin 22^\circ})$$
$$( \frac{1+cosĀ 22^\circ +sinĀ 22^\circ}{cosĀ 22^\circ})Ā $$ $$( \frac{cosĀ 22^\circ +sinĀ 22^\circ -1}{sin 22^\circ})$$
$$\frac{sin^2 22^\circ + cos^2 22^\circ + 2cos22^\circ \times sin22^\circ -1}{Ā cos 22^\circ sin 22^\circĀ }$$
$$\frac{1 + 2cos 22^\circ sin 22^\circ -1}{Ā cos 22^\circ sin 22^\circĀ }$$ = 2
Create a FREE account and get: