Question 80

Find 2 consecutive natural numbers, sum of whose squares is 25.

Solution

Let the consecutive natural numbers be $$x$$ , $$(x+1)$$

Sum of their squares = $$(x)^2+(x+1)^2=25$$

=> $$x^2+(x^2+2x+1)=25$$

=> $$2x^2+2x+1-25=0$$

=> $$x^2+x-12=0$$

=> $$x^2+4x-3x-12=0$$

=> $$x(x+4)-3(x+4)=0$$

=> $$(x+4)(x-3)=0$$

=> $$x=-4,3$$

Since, the numbers are natural, thus $$x \neq -4$$

$$\therefore$$ Numbers are = 3, 4

=> Ans - (B)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App