Let the consecutive natural numbers be $$x$$ , $$(x+1)$$
Sum of their squares = $$(x)^2+(x+1)^2=25$$
=> $$x^2+(x^2+2x+1)=25$$
=> $$2x^2+2x+1-25=0$$
=> $$x^2+x-12=0$$
=> $$x^2+4x-3x-12=0$$
=> $$x(x+4)-3(x+4)=0$$
=> $$(x+4)(x-3)=0$$
=> $$x=-4,3$$
Since, the numbers are natural, thus $$x \neq -4$$
$$\therefore$$ Numbers are = 3, 4
=> Ans - (B)
Create a FREE account and get: