The value of $$\frac{(1 + 17)\left(1 + \frac{17}{2}\right)\left(1 + \frac{17}{3}\right)...\left(1 + \frac{17}{19}\right)}{(1 + 19)\left(1 + \frac{19}{2}\right)\left(1 + \frac{19}{3}\right)...\left(1 + \frac{19}{17}\right)}$$ is
To solve this, we shall first simplify each bracket in the expression.
Hence, the numerator becomes (18*19*20*21....36)/(1*2*3*4.....19)
Similarly, the denominator becomes (20*21*22*23.....36)/(1*2*3*4......17)
Now, on dividing the numerator by the denominator, we get the answer as 1.