Question 77

If $$2x-3(4-2x)<4x-5<4x+\frac{2x}{3}$$, then x can take which of the following values?

Solution

Expression 1 : 2x - 3(4 - 2x) < 4x - 5

=> $$2x-12+6x$$ < $$4x-5$$

=> $$8x-4x$$ < $$-5+12$$

=> $$4x$$ < $$7$$

=> $$x$$ < $$\frac{7}{4}$$ -----------(i)

Expression 2 : 4x - 5 < 4x + 2x/3

=> $$\frac{2x}{3}$$ > $$-5$$

=> $$x$$ > $$\frac{-15}{2}$$ ----------(ii)

Combining inequalities (i) and (ii), we get : $$\frac{-15}{2}$$ < $$x$$ < $$\frac{7}{4}$$

The only value that $$x$$ can take among the options = 0

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App