If $$2x-3(4-2x)<4x-5<4x+\frac{2x}{3}$$, then x can take which of the following values?
Expression 1Â :Â 2x - 3(4 - 2x) < 4x - 5
=> $$2x-12+6x$$ < $$4x-5$$
=> $$8x-4x$$ < $$-5+12$$
=> $$4x$$ < $$7$$
=> $$x$$ < $$\frac{7}{4}$$ -----------(i)
Expression 2Â :Â 4x - 5 < 4x + 2x/3
=> $$\frac{2x}{3}$$ > $$-5$$
=> $$x$$ > $$\frac{-15}{2}$$ ----------(ii)
Combining inequalities (i) and (ii), we get : $$\frac{-15}{2}$$ < $$x$$ < $$\frac{7}{4}$$
The only value that $$x$$ can take among the options = 0
=> Ans - (C)
Create a FREE account and get: