PA and PB are the tangents to a circle with centre O, from a point P outside the circle. A and B are the points on the circle. If $$\angle$$APB = 72$$^\circ$$, then $$\angle$$OAB is equal to:
Given, $$\angle$$APB = 72$$^\circ$$
PA and PB are the tangents to the circle with centre O
$$=$$>  $$\angle$$OAP = 90$$^\circ$$ and  $$\angle$$OBP = 90$$^\circ$$
In quadrilateral OAPB,
$$\angle$$AOB + $$\angle$$OBP + $$\angle$$APB + $$\angle$$OAP = 360$$^\circ$$
$$=$$> Â $$\angle$$AOB +Â 90$$^\circ$$ +Â 72$$^\circ$$ +Â 90$$^\circ$$ =Â 360$$^\circ$$
$$=$$> Â $$\angle$$AOB +Â 252$$^\circ$$ =Â 360$$^\circ$$
$$=$$> Â $$\angle$$AOB =Â 108$$^\circ$$
In $$\triangle\ $$OAB, OA = OB
Angles opposite to equal sides are equal in triangle
$$=$$> Â $$\angle$$OBA =Â $$\angle$$OAB
In $$\triangle\ $$OAB,
$$\angle$$AOB +Â $$\angle$$OBA +Â $$\angle$$OAB =Â 180$$^\circ$$
$$=$$> Â 108$$^\circ$$ +Â $$\angle$$OAB +Â $$\angle$$OAB =Â 180$$^\circ$$
$$=$$> Â 2$$\angle$$OAB =Â 72$$^\circ$$
$$=$$>Â Â $$\angle$$OAB = 36$$^\circ$$
Hence, the correct answer is Option C
Create a FREE account and get: