Given that x+ $$\frac{1}{x}$$=$$\surd{3}$$
Squaring on both sides, we getÂ
$$(x+ \frac{1}{x})^{3}=(\surd{3})^{3}$$
=> $$x^{3}+\frac{1}{x^3}+3\surd{3}=3\surd{3}$$
=>Â $$x^{3}+\frac{1}{x^3} = 0 $$
=>Â $$x^{3}= -Â \frac{1}{x^3} $$
=>Â $$x^{6}= -1 $$
Squaring on both sides
=>Â $$x^{12}= 1 $$
$$ (x^{6})^{3} = (-1)^{3} = -1 $$
Therefore,Â
$$x^{18}+x^{12}+x^{6}+1$$ = $$ -1 + 1 -1 + 1 = 0 $$
Create a FREE account and get: