Question 73

if x+ $$\frac{1}{x}$$=$$\surd{3}$$ then the value of $$x^{18}+x^{12}+x^{6}+1$$

Solution

Given that x+ $$\frac{1}{x}$$=$$\surd{3}$$

Squaring on both sides, we get 

$$(x+ \frac{1}{x})^{3}=(\surd{3})^{3}$$

=> $$x^{3}+\frac{1}{x^3}+3\surd{3}=3\surd{3}$$

=>  $$x^{3}+\frac{1}{x^3} = 0 $$

=>  $$x^{3}= - \frac{1}{x^3} $$

=> $$x^{6}= -1 $$

Squaring on both sides

=> $$x^{12}= 1 $$

$$ (x^{6})^{3} = (-1)^{3} = -1 $$

Therefore, 

$$x^{18}+x^{12}+x^{6}+1$$ = $$ -1 + 1 -1 + 1 = 0 $$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App