Question 72

If a = 299, b = 298, c = 297 then the value of $$2a^{3} + 2b^{3} + 2c^{3}- 6abc$$ is

Solution

$$2a^{3} + 2b^{3} + 2c^{3}- 6abc$$,

Taking 2 common , and using , $$(a^3 + b^3 + c^3 - 3abc) = (a + b +c)(a^2 + b^2 +c^2 - ab - bc -ca)$$

= $$2(a + b +c)(a^2 + b^2 + c^2 - ab - bc - ca)$$

=$$2(894)(89401 + 88804 + 88209 - 89102 - 88506 - 88803)$$

= $$2 \times 894 \times 3$$

=5364

So, the answer would be option c)5364.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App