The total surface area of a solid right circular cylinder is 1617 $$cm^{2}$$. If the diameter of its base is 21 cm, then what it its volume (in $$cm^{3}$$) (Taken $$\pi=\frac{22}{7}$$)
If the diameter of its base is 21 cm.
radius = r =Â $$\frac{21}{2}$$ = 10.5 cm
The total surface area of a solid right circular cylinder is 1617 $$cm^{2}$$.
$$2\times\ \pi\ \times\ radius\times\ \left(radius+height\right) =Â 1617$$
$$2\times\ \frac{22}{7}\times\ 10.5\times\ \left(10.5+height\right) = 1617$$
$$44\times\ 1.5\times\ \left(10.5+height\right) = 1617$$
$$66\times\ \left(10.5+height\right) = 1617$$
$$\left(10.5+height\right) = 24.5$$
10.5+height = 24.5height = 24.5-10.5
= 14
Volume =Â $$\pi\times\left(radius\right)^2\times height$$
=Â $$\frac{22}{7}\times\left(10.5\right)^2\times14$$
= $$22\times110.25\times2$$
=Â 4851Â $$cm^{3}$$
Create a FREE account and get: