The value of $$\sin^2 20^\circ + \sin^2 70^\circ - \tan^2 45^\circ + \sec 60^\circ$$ is equal to:
Given that,
$$\sin^2 20^\circ + \sin^2 70^\circ - \tan^2 45^\circ + \sec 60^\circ$$
We know that, $$\cos(90-\theta)=\sin \theta$$
$$\sin^2 20^\circ + \cos^2 (90^\circ-70^\circ) - \tan^2 45^\circ + \sec 60^\circ$$
$$\Rightarrow \sin^2 20^\circ + \cos^2 20^\circ - \tan^2 45^\circ + \sec 60^\circ$$
We know that $$\sin^2 \theta +\cos^2 \theta=1$$
So,
$$\Rightarrow 1 - \tan^2 45^\circ + \sec 60^\circ$$
We know that $$\tan 45=1$$ and $$\cos 60^\circ=\dfrac{1}{2}$$
Now, substituting the values
$$\Rightarrow= 1 - 1+ \dfrac{1}{\cos 60^\circ}$$
$$\Rightarrow= 1 - 1+ \dfrac{2}{1}$$
$$\Rightarrow= 2$$
Create a FREE account and get: