The arc ABC of a circle with centre O subtends 132 at the centre. The chord AB is extended to the point P. The angle $$\angle$$CBP is equal to
As per the given question,
Angle subtended by the arc =132
Now,
As we know, from the property of circle,
$$2 \times \angle ADC=\angle AOC$$
$$\Rightarrow 2 \times \angle ADC=132^\circ$$
$$\Rightarrow \angle ADC=\dfrac{132^\circ}{2}$$
$$\Rightarrow \angle ADC=66^\circ----------------(i)$$
Now, ABCD is a cyclic quadrilateral,
So as the property of the cyclic quadrilateral
$$\angle ADC +\angle ABC=180$$
$$\Rightarrow \angle ABC=180-\angle ADC$$
$$\Rightarrow \angle ABC=180-66=114^\circ -------------------(ii)$$
We know that angle subtended on the straight line$$ =180^\circ$$
Now, $$\angle ABC +\angle CBP=180$$
$$\angle CBP=180-\angle ABC =180-114=66^\circ$$
$$\Rightarrow \angle CBP=66^\circ$$
Create a FREE account and get: