If $$3 \cos^2 A + 7 \sin^2 A = 4$$, then what is the value of $$\cot A$$, given that A is an acute angle?
As per the given question,
$$3 \cos^2 A + 7 \sin^2 A = 4$$
$$\Rightarrow 3 \cos^2 A + 3 \sin^2 A +4 \sin^2 A = 4$$
We know that $$\sin^2 \theta+\cos^2\theta=1$$
$$\Rightarrow 3 (\cos^2 A +Â \sin^2 A )+4 \sin^2 A = 4$$
$$\Rightarrow 3 (1 )+4 \sin^2 A = 4$$
$$\Rightarrow 4 \sin^2 A = 1$$
$$\Rightarrow \sin A = \dfrac{1}{2}=\sin\dfrac{\pi}{6}$$
$$\Rightarrow A=\dfrac{\pi}{6}$$
Hence, $$\cot\theta=\cot \dfrac{\pi}{6}=\sqrt3$$
Create a FREE account and get: