If $$(x - 5)^3 + (x - 6)^3 + (x - 7)^3 = 3 (x - 5) (x - 6) (x - 7)$$, then what is the value of x ?
As per the given question,
$$(x - 5)^3 + (x - 6)^3 + (x - 7)^3 = 3 (x - 5) (x - 6) (x - 7)$$
Let (x-5)=a, (x-6)=b and (x-7)=c
Now, $$(x - 5)^3 + (x - 6)^3 + (x - 7)^3 = 3 (x - 5) (x - 6) (x - 7)$$
$$\Rightarrow a^3 + b^3 + c^3 = 3 a b c$$
We know that $$a^3 + b^3 + c^3- 3 a b c=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$
Hence, $$[(x-5)+(x-6)+(x-7)][(x-5)^2+(x-6)^2+(x-7)-(x-5)(x-6)-(x-6)(x-7)-(x-7)(x-5)]=0$$
$$\Rightarrow [(3x-18)][(x-5)^2+(x-6)^2+(x-7)-(x-5)(x-6)-(x-6)(x-7)-(x-7)(x-5)]=0$$
So, $$3x-18=0$$
Hence $$x=6$$
Create a FREE account and get: