As per given in the question,
$$x + \frac{1}{x} = 5$$
taking cube of both side,
$$\Rightarrow (x + \frac{1}{x} = 5)^3=x^3+\dfrac{1}{x^3}+3x\times{\dfrac{1}{x}}(x+\dfrac{1}{x})$$
Now, substituting the values in the question,
$$\Rightarrow (x + \frac{1}{x} = 5)^3=x^3+\dfrac{1}{x^3}+3x\times{\dfrac{1}{x}}(x+\dfrac{1}{x})$$
$$\Rightarrow (5^3)=x^3+\dfrac{1}{x^3}+3\times 5$$
$$\Rightarrow 125=x^3+\dfrac{1}{x^3}+15$$
$$\Rightarrow x^3+\dfrac{1}{x^3}=125-15=110$$
Create a FREE account and get: