What is the value of $$\frac{7}{8} + \frac{8}{11} \text{of} \left[\frac{33}{16} - \frac{5}{12} + \left(\frac{6}{11} - \frac{5}{12} + \frac{7}{22}\right)\right]$$?
=Â $$\frac{7}{8} + \frac{8}{11} \text{of} \left[\frac{33}{16} - \frac{5}{12} + \left(\frac{6}{11} - \frac{5}{12} + \frac{7}{22}\right)\right]$$
=Â $$\frac{7}{8}+\frac{8}{11}\text{of}\left[\frac{33}{16}-\frac{5}{12}+\left(\frac{144-110+84}{264}\right)\right]$$
=Â $$\frac{7}{8}+\frac{8}{11}\text{of}\left[\frac{33}{16}-\frac{5}{12}+\left(\frac{118}{264}\right)\right]$$
= $$\frac{7}{8}+\frac{8}{11}\text{of}\left[\frac{33}{16}-\frac{5}{12}+\frac{118}{264}\right]$$
=Â $$\frac{7}{8}+\frac{8}{11}\text{of}\left[\frac{1089-220+236}{528}\right]$$
= $$\frac{7}{8}+\frac{8}{11}\text{of}\left[\frac{1105}{528}\right]$$
=Â $$\frac{7}{8}+\frac{8}{11}\times\frac{1105}{528}$$
= $$\frac{7}{8}+\frac{8840}{5808}$$= $$\frac{6961}{2904}$$
Create a FREE account and get: