The average of 10 consecutive integers is $$\frac{11}{2}$$. What is the average of the "smallest four" of these integers?
The average of 10 consecutive integers is $$\frac{11}{2}$$.
Let's assume the smallest integer among them is 'y'.
$$\frac{y+\left(y+1\right)+\left(y+2\right)+\left(y+3\right)+\left(y+4\right)+\left(y+5\right)+\left(y+6\right)+\left(y+7\right)+\left(y+8\right)+\left(y+9\right)}{10}\ =\ \frac{11}{2}$$
$$\frac{y+\left(y+1\right)+\left(y+2\right)+\left(y+3\right)+\left(y+4\right)+\left(y+5\right)+\left(y+6\right)+\left(y+7\right)+\left(y+8\right)+\left(y+9\right)}{10}\ =\ 5.5$$
10y+45 = 5510y = 55-45
10y = 10
y = 1
So the "smallest four" numbers will be 1, 2, 3 and 4
Average of the "smallest four" of these integers = $$\frac{1+2+3+4}{4}$$
= $$\frac{10}{4}$$
= 2.5
Create a FREE account and get: