If $$4(\cosec^2 66^\circ - \tan^2 24^\circ ) + \frac{1}{2} \sin 90^\circ - 4 \tan^2 66^\circ y \tan^2 24^\circ = \frac{y}{2}$$, then the value of $$y$$ is:
$$4(\cosec^2 66^\circ - \tan^2 24^\circ) + \frac{1}{2}\sin90^{\circ} -4 \tan^2 66^\circ y \tan^2 24^\circ = \frac{y}{2}$$
$$=$$> $$4(\operatorname{cosec}^266^{\circ}-\tan^2\left(90-66\right)^{\circ})+ \frac{1}{2}\left(1\right)-4\tan^266^{\circ}y\tan^2\left(90-66\right)^{\circ}=\frac{y}{2}$$
$$=$$> $$4(\operatorname{cosec}^266^{\circ}-\cot^266)^{\circ\ }+ \frac{1}{2}-4 \tan^266^{\circ}y\cot^266^{\circ}=\frac{y}{2}$$
$$=$$> $$4\left(1\right)+ \frac{1}{2}-4y=\frac{y}{2}$$
$$=$$> $$\frac{y}{2}+4y= \frac{9}{2}$$
$$=$$> $$\frac{9y}{2}= \frac{9}{2}$$
$$=$$> $$y=1$$
Hence, the correct answer is Option D
Create a FREE account and get: