Question 67

If $$4(\cosec^2 66^\circ - \tan^2 24^\circ ) + \frac{1}{2} \sin 90^\circ - 4 \tan^2 66^\circ y \tan^2 24^\circ = \frac{y}{2}$$, then the value of $$y$$ is:

Solution

$$4(\cosec^2 66^\circ - \tan^2 24^\circ) + \frac{1}{2}\sin90^{\circ} -4 \tan^2 66^\circ y \tan^2 24^\circ = \frac{y}{2}$$

$$=$$> $$4(\operatorname{cosec}^266^{\circ}-\tan^2\left(90-66\right)^{\circ})+ \frac{1}{2}\left(1\right)-4\tan^266^{\circ}y\tan^2\left(90-66\right)^{\circ}=\frac{y}{2}$$

$$=$$> $$4(\operatorname{cosec}^266^{\circ}-\cot^266)^{\circ\ }+ \frac{1}{2}-4 \tan^266^{\circ}y\cot^266^{\circ}=\frac{y}{2}$$

$$=$$> $$4\left(1\right)+ \frac{1}{2}-4y=\frac{y}{2}$$

$$=$$> $$\frac{y}{2}+4y= \frac{9}{2}$$

$$=$$> $$\frac{9y}{2}= \frac{9}{2}$$

$$=$$> $$y=1$$

Hence, the correct answer is Option D


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App