Chords AB and CD of a circle intersect externally at P. If AB = 6 cm, CD = 3 cm and PB = 4 cm, then the length (in cm) of PD is:
Given,
AB = 6 cm, CD = 3 cm and PB = 4 cm
Let PD = $$x$$ cm
If chords AB and CD of a circle intersect externally at P then $$\text{PA}\times \text{PB}=\text{PC}\times \text{PD}$$
$$=$$> Â $$\left(AB+PB\right)\times PB=\left(CD+PD\right)\times PD$$
$$=$$> Â $$\left(6+4\right)\times4=\left(3+x\right)\times x$$
$$=$$> Â $$40=3x+x^2$$
$$=$$> Â $$x^2+3x-40=0$$
$$=$$> Â $$x^2+8x-5x-40=0$$
$$=$$> Â $$x\left(x+8\right)-5\left(x+8\right)=0$$
$$=$$> Â $$\left(x+8\right)\left(x-5\right)=0$$
$$=$$>  $$x+8=0$$ or   $$x-5=0$$
$$=$$>  $$x=-8$$  or  $$x=5$$
$$x$$ cannot be negative
$$=$$> Â $$x=5$$
$$\therefore\ $$PD = $$x$$ = 5 cm
Hence, the correct answer is Option A
Create a FREE account and get: