Question 65

In $$\triangle$$ABC, BD $$\perp$$ AC. E is point on BC such that $$\angle$$BEA = $$x^\circ$$. If $$\angle$$EAC = $$38^\circ$$ and $$\angle$$EBD = $$40^\circ$$, then the value of x is:

Solution

BD $$\perp$$ AC

$$=$$> $$\angle$$BDC = $$90^\circ$$

In $$\triangle\ $$BDC,

$$\angle$$DBC +$$\angle$$BDC + $$\angle$$BCD = $$180^{\circ\ }$$

$$=$$>  $$40^{\circ\ }+90^{\circ\ }$$+ $$\angle$$BCD=$$180^{\circ\ }$$

$$=$$>  $$\angle$$BCD = $$50^{\circ\ }$$

In $$\triangle\ $$AEC

$$\angle$$AEB is the exterior angle at E is equal to the sum of the interior angle at A and C

$$=$$> $$\angle$$AEB = $$\angle$$EAC + $$\angle$$ACE

$$=$$> $$x^{\circ\ }=38^{\circ\ }+50^{\circ\ }$$

$$=$$> $$x^{\circ\ }=88^{\circ\ }\ $$

Hence, the correct answer is Option D


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App