In $$\triangle$$ABC, BD $$\perp$$ AC. E is point on BC such that $$\angle$$BEA = $$x^\circ$$. If $$\angle$$EAC = $$38^\circ$$ and $$\angle$$EBD = $$40^\circ$$, then the value of x is:
BD $$\perp$$ AC
$$=$$>Â $$\angle$$BDC = $$90^\circ$$
In $$\triangle\ $$BDC,
$$\angle$$DBC +$$\angle$$BDC +Â $$\angle$$BCD =Â $$180^{\circ\ }$$
$$=$$> Â $$40^{\circ\ }+90^{\circ\ }$$+ $$\angle$$BCD=$$180^{\circ\ }$$
$$=$$> Â $$\angle$$BCD =Â $$50^{\circ\ }$$
In $$\triangle\ $$AEC
$$\angle$$AEB is the exterior angle at E is equal to the sum of the interior angle at A and C
$$=$$> $$\angle$$AEB =Â $$\angle$$EAC +Â $$\angle$$ACE
$$=$$>Â $$x^{\circ\ }=38^{\circ\ }+50^{\circ\ }$$
$$=$$> $$x^{\circ\ }=88^{\circ\ }\ $$
Hence, the correct answer is Option D
Create a FREE account and get: