If x=999 y=1000, z=1001, then the value of $$\frac{x^{3}+y^{3}+z^3-3xyz}{x-y+z}$$ is
Given : x=999 y=1000, z=1001
Let $$y=k$$, => $$x=(k-1)$$ and $$z=(k+1)$$
To find : $$\frac{x^{3}+y^{3}+z^3-3xyz}{x-y+z}$$
= $$\frac{(k-1)^3+(k)^3+(k+1)^3-3[(k-1)(k)(k+1)]}{(k-1)-(k)+(k+1)}$$
= $$\frac{1}{k} \times [(k^3-1-3k^2+3k)+(k^3)+(k^3+1+3k^2+3k)-3(k^3-k)]$$
= $$\frac{1}{k} \times [(3k^3+6k)+(-3k^3+3k)]$$
=> $$\frac{9k}{k}=9$$
=> Ans - (D)
Create a FREE account and get: