Question 66

$$\frac{a}{1-2a}+\frac{b}{1-2b}+\frac{c}{1-2c}=\frac{1}{2}$$ then the value $$\frac{1}{1-2a}+\frac{1}{1-2b}+\frac{1}{1-2c}$$ is 

Solution

Expression : $$\frac{a}{1-2a}+\frac{b}{1-2b}+\frac{c}{1-2c}=\frac{1}{2}$$ --------(i)

Let $$\frac{a}{1-2a}=\frac{b}{1-2b}=\frac{c}{1-2c}=k$$

Substituting it in equation (i)

=> $$k+k+k=3k=\frac{1}{2}$$

=> $$k=\frac{1}{6}$$

Thus, $$\frac{a}{1-2a}=\frac{1}{6}$$

=> $$6a=1-2a$$ ------------(ii)

=> $$6a+2a=8a=1$$

=> $$a=\frac{1}{8}$$

Substituting it in equation (ii), we get :

=> $$1-2a=\frac{6}{8}=\frac{3}{4}$$

=> $$\frac{1}{1-2a}=\frac{4}{3}$$

Similarly, $$(\frac{1}{1-2b})=(\frac{1}{1-2c})=\frac{4}{3}$$

To find : $$\frac{1}{1-2a}+\frac{1}{1-2b}+\frac{1}{1-2c}$$

= $$\frac{4}{3}+\frac{4}{3}+\frac{4}{3}=4$$

=> Ans - (D)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App