$$\frac{a}{1-2a}+\frac{b}{1-2b}+\frac{c}{1-2c}=\frac{1}{2}$$ then the value $$\frac{1}{1-2a}+\frac{1}{1-2b}+\frac{1}{1-2c}$$ isÂ
Expression : $$\frac{a}{1-2a}+\frac{b}{1-2b}+\frac{c}{1-2c}=\frac{1}{2}$$ --------(i)
Let $$\frac{a}{1-2a}=\frac{b}{1-2b}=\frac{c}{1-2c}=k$$
Substituting it in equation (i)
=> $$k+k+k=3k=\frac{1}{2}$$
=> $$k=\frac{1}{6}$$
Thus, $$\frac{a}{1-2a}=\frac{1}{6}$$
=> $$6a=1-2a$$ ------------(ii)
=> $$6a+2a=8a=1$$
=> $$a=\frac{1}{8}$$
Substituting it in equation (ii), we get :
=> $$1-2a=\frac{6}{8}=\frac{3}{4}$$
=> $$\frac{1}{1-2a}=\frac{4}{3}$$
Similarly, $$(\frac{1}{1-2b})=(\frac{1}{1-2c})=\frac{4}{3}$$
To find : $$\frac{1}{1-2a}+\frac{1}{1-2b}+\frac{1}{1-2c}$$
= $$\frac{4}{3}+\frac{4}{3}+\frac{4}{3}=4$$
=> Ans - (D)
Create a FREE account and get: