Question 65

If $$x^4 + x^{-4} = 194, (x > 0)$$, then the value of $$(2x - 4)^2$$ is:

Solution

Given, $$x^4 + x^{-4} = 194$$

$$=$$> $$x^4+\frac{1}{x^4}+2=194+2$$

$$=$$> $$\left(x^2+\frac{1}{x^2}\right)^2=196$$

$$=$$> $$x^2+\frac{1}{x^2}=14$$

$$=$$> $$x^2+\frac{1}{x^2}+2=14+2$$

$$=$$> $$\left(x+\frac{1}{x}\right)^2=16$$

$$=$$> $$x+\frac{1}{x}=4$$

$$=$$> $$x^2-4x+1=0$$

$$=$$> $$x^2-4x=-1$$

$$\therefore\ \left(2x-4\right)^2=4x^2+16-16x=4\left(x^2-4x\right)+16=4\left(-1\right)+16=12$$

Hence, the correct answer is Option C


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App