Given, $$x^4 + x^{-4} = 194$$
$$=$$> $$x^4+\frac{1}{x^4}+2=194+2$$
$$=$$> $$\left(x^2+\frac{1}{x^2}\right)^2=196$$
$$=$$> $$x^2+\frac{1}{x^2}=14$$
$$=$$> $$x^2+\frac{1}{x^2}+2=14+2$$
$$=$$> $$\left(x+\frac{1}{x}\right)^2=16$$
$$=$$> $$x+\frac{1}{x}=4$$
$$=$$> $$x^2-4x+1=0$$
$$=$$> $$x^2-4x=-1$$
$$\therefore\ \left(2x-4\right)^2=4x^2+16-16x=4\left(x^2-4x\right)+16=4\left(-1\right)+16=12$$
Hence, the correct answer is Option C
Create a FREE account and get: