ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and $$\angle$$ADC = 126$$^\circ$$. $$\angle$$BAC is equal to:
In cyclic quadrilateral ABCD, sum of opposite angles =Â 180$$^\circ$$
$$=$$> Â $$\angle$$ADC +Â $$\angle$$ABC =Â 180$$^\circ$$
$$=$$> Â 126$$^\circ$$Â +Â $$\angle$$ABC = 180$$^\circ$$
$$=$$> Â Â $$\angle$$ABC =Â 54$$^\circ$$
Angle subtended by diameter in a semicircle is 90$$^\circ$$
$$=$$> Â $$\angle$$ACB =Â 90$$^\circ$$
In $$\triangle\ $$ACB,
$$\angle$$BAC +Â $$\angle$$ACB +Â $$\angle$$ABC =Â 180$$^\circ$$
$$=$$> Â $$\angle$$BAC + 90$$^\circ$$ +Â 54$$^\circ$$ =Â 180$$^\circ$$
$$=$$> Â $$\angle$$BAC +Â 144$$^\circ$$ =Â 180$$^\circ$$
$$=$$> Â $$\angle$$BAC = 36$$^\circ$$
Hence, the correct answer is Option D
Create a FREE account and get: