In the figure given below, O is the centre of the circle. If $$\angle OBC = 37^\circ$$, the $$\angle BAC$$ is equal to
In the circle, OB=OC (radii), => $$\angle OBC=\angleĀ OCB=37^\circ$$
In $$\triangle$$ OBC, using angle sum property
=> $$\angle BOC+\angle OBC+\angle OCB=180^\circ$$
=> $$\angle BOC+37^\circ+37^\circ=180^\circ$$
=> $$\angleĀ BOC=180^\circ-74^\circ=106^\circ$$
Now, angle subtended by an arc at the centre is double the angle subtended by it at any point on the circle.
=> $$\angleĀ BOC=2\times\angleĀ BAC$$
=> $$\angle BAC=\frac{106^\circ}{2}=53^\circ$$
=> Ans - (C)
Create a FREE account and get: