If $$x-3+[\frac{1}{(x-3)}]=4$$, what is the value of $$(x-3)^3+[\frac{1}{(x-3)^3}]$$ ?
Given : $$x-3+[\frac{1}{(x-3)}]=4$$ ------------(i)
Cubing both sides, we get :
=>Â $$(x-3+[\frac{1}{(x-3)}])^3=(4)^3$$
=> $$(x-3)^3+(\frac{1}{x-3})^3+3(x-3)(\frac{1}{x-3})[(x-3)+(\frac{1}{x-3})]=64$$
=> $$(x-3)^3+(\frac{1}{x-3})^3+3(4)=64$$ Â Â [Using equation (i)]
=>Â $$(x-3)^3+[\frac{1}{(x-3)^3}]=64-12=52$$
=> Ans - (C)
Create a FREE account and get: