ExpressionĀ :Ā $$2x^2 + x - 3 < 0$$
=> $$2x^2-2x+3x-3<0$$
=> $$(2x+3)(x-1)<0$$
Now product of two numbers is negative only if one is positive and other is negative.
CaseĀ I : $$(2x+3)>0$$ => $$x>\frac{-3}{2}$$
and $$(x-1)<0$$ => $$x<1$$
$$\therefore$$ $$\frac{-3}{2}<x<1$$
CaseĀ II :Ā $$(2x+3)<0$$ => $$x<\frac{-3}{2}$$
and $$(x-1)>0$$ => $$x>1$$, which is not possible.
=> Ans - (A)
Create a FREE account and get: