If PA and PB are tangents drawn from an external point P to a circle with centre O such that $$\angle$$APB = 70$$^\circ$$, then     $$\angle$$OAB is equal to:
Given, $$\angle$$APB = 70$$^\circ$$
PA and PB are the tangents to the circle with centre O
$$\Rightarrow$$ $$\angle$$OAP = 90$$^\circ$$ and $$\angle$$OBP = 90$$^\circ$$
In quadrilateral OAPB,
$$\angle$$AOB + $$\angle$$OBP + $$\angle$$APB + $$\angle$$OAP = 360$$^\circ$$
$$\Rightarrow$$Â $$\angle$$AOB + 90$$^\circ$$ + 70$$^\circ$$ + 90$$^\circ$$ = 360$$^\circ$$
$$\Rightarrow$$Â $$\angle$$AOB + 250$$^\circ$$ = 360$$^\circ$$
$$\Rightarrow$$Â $$\angle$$AOB = 110$$^\circ$$
In $$\triangle\ $$OAB, OA = OB
Angles opposite to equal sides are equal in triangle
$$\Rightarrow$$Â $$\angle$$OBA = $$\angle$$OAB
In $$\triangle\ $$OAB,
$$\angle$$AOB + $$\angle$$OBA + $$\angle$$OAB = 180$$^\circ$$
$$\Rightarrow$$Â 110$$^\circ$$ + $$\angle$$OAB + $$\angle$$OAB = 180$$^\circ$$
$$\Rightarrow$$Â 2$$\angle$$OAB = 70$$^\circ$$
$$\Rightarrow$$Â $$\angle$$OAB = 35$$^\circ$$
Hence, the correct answer is Option A
Create a FREE account and get: