In $$\triangle$$ABC, E and D are points on sides AB and AC, respectively, such that $$\angle$$ABC = $$\angle$$ADE. If AE = 6 cm, AD = 4 cm
and EB = 4 cm, then the length of DC is:
In $$\triangle$$ABC and $$\triangle$$ADE,
$$\angle$$ABC = $$\angle$$ADE
$$\angle$$BAC = $$\angle$$DAE
So $$\triangle$$ABC is similar to $$\triangle$$ADE
$$\Rightarrow$$ Â $$\frac{AB}{AC}=\frac{AD}{AE}$$
$$\Rightarrow$$ Â $$\frac{AE+EB}{AD+DC}=\frac{AD}{AE}$$
$$\Rightarrow$$ Â $$\frac{6+4}{4+DC}=\frac{4}{6}$$
$$\Rightarrow$$ Â $$\frac{10}{4+DC}=\frac{2}{3}$$
$$\Rightarrow$$Â 4 + DC = 15
$$\Rightarrow$$Â DC = 11 cm
Hence, the correct answer is Option D
Create a FREE account and get: