If $$a^{3}+\frac{1}{a^{3}} = 52$$ then the value of $$2\left(a + \frac{1}{a}\right)$$ is :
$$a^{3}+\frac{1}{a^{3}} = 52$$
$$(a + \frac{1}{a})^3 - 3.a.\frac{1}{a}(a + \frac{1}{a}) = 52$$
$$(\because a^3 + b^3 = (a + b)^3 - 3ab(a + b))$$
$$(a + \frac{1}{a})^3 - 3(a + \frac{1}{a}) = 52$$
From the option A) -
Put the value of $$2(a + \frac{1}{a}) = 8$$,
$$(a + \frac{1}{a}) = 4$$
L.H.S.,
$$4^3 - 3 \times 4$$ = 52
= R.H.S.
$$\therefore$$ The value of $$2\left(a + \frac{1}{a}\right)$$ is 8.
Create a FREE account and get: