If $$b + c = ax, c + a = by, a + b = cz$$, then the value $$\frac{1}{9}\left[\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right]$$ is:
$$b + c = ax, c + a = by, a + b = cz$$
x =$$\frac{b + c}{a}$$
y =$$\frac{c + a}{b}$$
z =$$\frac{a + b}{c}$$
Now,
$$\frac{1}{9}\left[\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right]$$
x + 1 =Â $$\frac{b + c}{a}$$ + 1 = $$\frac{a + b + c}{a}$$
y + 1 = $$\frac{c + a}{b}$$ + 1 = $$\frac{a + b + c}{b}$$
z + 1 = $$\frac{a + b}{c}$$ + 1 = $$\frac{a + b + c}{c}$$
=Â $$\frac{1}{9}\left[\frac{1}{\frac{a + b + c}{a}}+\frac{1}{\frac{a + b + c}{b}}+\frac{1}{\frac{a + b + c}{c}}\right]$$
$$\frac{1}{9}\left[\frac{a}{a + b + c}+\frac{b}{a + b + c}+\frac{c}{a + b + c}\right]$$
$$\frac{1}{9}[\frac{a + b + c}{a + b + c}]$$ = 1/9
Create a FREE account and get: