Question 58

If $$1 + 9r^2 + 81r^4 = 256$$ and $$1 + 3r + 9r^2 = 32$$, then find the value of $$1 - 3r + 9r^2$$.

Solution

Given that $$1 + 3r + 9r^2 = 32$$

and let $$1 - 3r + 9r^2$$ be K 

Multiply $$1 + 3r + 9r^2$$ and $$1 - 3r + 9r^2$$

we get the product as $$1 + 9r^2 + 81r^4$$ = 32K

but $$1 + 9r^2 + 81r^4$$= 256
substitute this value in the product

256 = 32k

K=8

Therefore, answer is option B 


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App